產(chǎn)品目錄
  • 細(xì)胞培養(yǎng)進(jìn)口血清
    進(jìn)口胎牛血清
    進(jìn)口新生牛血清
    進(jìn)口豬血清
    馬血清
  • 支原體檢測(cè)盒及標(biāo)準(zhǔn)品
    常規(guī)PCR檢測(cè)試劑盒
    熒光定量PCR檢測(cè)(qPCR法)
    支原體DNA提取
    靈敏度標(biāo)準(zhǔn)品(方法驗(yàn)證用)
    特異性標(biāo)準(zhǔn)品(方法驗(yàn)證用)
    PCR定量標(biāo)準(zhǔn)品(可用于方法驗(yàn)證)
  • 支原體祛除試劑
    細(xì)胞中支原體祛除
    環(huán)境支原體祛除
    水槽支原體祛除
  • 干細(xì)胞培養(yǎng)基
  • DNA/RNA污染祛除
    DNA/RNA污染祛除試劑
    DNA污染監(jiān)測(cè)
  • RNA病毒研究試劑
    RNA病毒檢測(cè)試劑盒
    病毒RNA提取
  • PCR儀器及配套產(chǎn)品
    DNA污染監(jiān)測(cè)祛除
    PCR/qPCR儀性能檢查
    PCR試劑
    PCR試劑盒
    PCR預(yù)混液(凍干粉)
    熱啟動(dòng)聚合酶MB Taq DNA
  • 微生物PCR檢測(cè)
    食品檢測(cè)類產(chǎn)品
    食品微生物檢測(cè)
    細(xì)菌PCR檢測(cè)
歡迎來(lái)到 威正翔禹|締一生物官方網(wǎng)站|咨詢熱線:400-166-8600
咨詢熱線
400-166-8600

產(chǎn)品目錄
  • 細(xì)胞培養(yǎng)進(jìn)口血清
    進(jìn)口胎牛血清
    進(jìn)口新生牛血清
    進(jìn)口豬血清
    馬血清
  • 支原體檢測(cè)盒及標(biāo)準(zhǔn)品
    常規(guī)PCR檢測(cè)試劑盒
    熒光定量PCR檢測(cè)(qPCR法)
    支原體DNA提取
    靈敏度標(biāo)準(zhǔn)品(方法驗(yàn)證用)
    特異性標(biāo)準(zhǔn)品(方法驗(yàn)證用)
    PCR定量標(biāo)準(zhǔn)品(可用于方法驗(yàn)證)
  • 支原體祛除試劑
    細(xì)胞中支原體祛除
    環(huán)境支原體祛除
    水槽支原體祛除
  • 干細(xì)胞培養(yǎng)基
  • DNA/RNA污染祛除
    DNA/RNA污染祛除試劑
    DNA污染監(jiān)測(cè)
  • RNA病毒研究試劑
    RNA病毒檢測(cè)試劑盒
    病毒RNA提取
  • PCR儀器及配套產(chǎn)品
    DNA污染監(jiān)測(cè)祛除
    PCR/qPCR儀性能檢查
    PCR試劑
    PCR試劑盒
    PCR預(yù)混液(凍干粉)
    熱啟動(dòng)聚合酶MB Taq DNA
  • 微生物PCR檢測(cè)
    食品檢測(cè)類產(chǎn)品
    食品微生物檢測(cè)
    細(xì)菌PCR檢測(cè)

Effects of Fetal Bovine Serum deprivation in cell cultures on the production of Anticarsia gemmatali

2016-09-28 14:22

In order to obtain synchronized cultures of Anticarsia gemmatalis (UFL-Ag 286) cells, different growth conditions in GRACE's medium with decreasing amounts of FBS were tested, because it was reported that the deprivation of this component allows arrest of cell cultures into G0/G1 cell cycle state [25]. First, with the goal to select the lowest concentration of FBS that did not affect cell survival, the total number of UFL-Ag-286 cells after incubation for 48 h in four different culture conditions (0.5%, 0.75%, 1.0% and 10% of FBS in GRACE's medium) were tested (Figure 1).

Figure 1

Growth of UFL-Ag-286 cells in culture conditions with different proportions of FBS. Monolayers of UFL-Ag-286 cells cultivated in 96 multiwell plates for 48 h were treated with four different concentrations of FBS (0.5, 0.75, 1.0 and 10%) in GRACE's medium. Thereafter, the total number of cells was measured by a colorimetric method (A), and the cell viability was measured by a MTT method (B). For each treatment, data were relativized to the respective 0 h time. Then, the obtained values were normalized with respect to the maximum value. The condition with 1.0% of FBS was not toxic to the cell culture (p = 0.1693, Student's T test), below this concentration the cellular viability was affected (***P < 0.001, *P < 0.05, Student's T test).

The results indicated that cell culture media containing both 0.5% (P < 0.001) and 0.75% (P < 0.05) of FBS caused an unacceptable decrease of the cellular viability, while the treatment with 1.0% FBS allowed to arrest the cell growth and preserve the initial viability (P = 0.1693). It should be noted that cells growing in standard conditions (10% FBS) showed typical behavior of cell multiplication (duplication time about 24-26 h), which is in agreement with previous literature [29]. According to the above, the culture condition of 1% FBS in GRACE's medium was chosen to continue with the trials in comparison with the standard growing condition (10% FBS in GRACE's medium). Lower concentrations of FBS (0.5% and 0.75%) caused a significant decrease in cellular quantity after 48 h of treatment, condition that could induce DNA fragmentation and subsequent cell death [28].


上一頁(yè) 1 2 3 下一頁(yè)